翻訳と辞書
Words near each other
・ Thermopotash
・ Thermoproteaceae
・ Thermoproteales
・ Thermoprotei
・ Thermoproteus
・ Thermopsin
・ Thermopsis
・ Thermopsis californica
・ Thermodesulforhabdus norvegica
・ Thermodiaptomus
・ Thermodiscus
・ Thermoduric bacterium
・ Thermodynamic activity
・ Thermodynamic beta
・ Thermodynamic cycle
Thermodynamic databases for pure substances
・ Thermodynamic diagrams
・ Thermodynamic efficiency limit
・ Thermodynamic equations
・ Thermodynamic equilibrium
・ Thermodynamic free energy
・ Thermodynamic instruments
・ Thermodynamic integration
・ Thermodynamic limit
・ Thermodynamic operation
・ Thermodynamic potential
・ Thermodynamic process
・ Thermodynamic process path
・ Thermodynamic pump testing
・ Thermodynamic relations across normal shocks


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Thermodynamic databases for pure substances : ウィキペディア英語版
Thermodynamic databases for pure substances

Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa (1 atm), or 100 kPa (1 bar). Unfortunately, both of these definitions for the standard condition for pressure are in use.
== Thermodynamic data ==

Thermodynamic data is usually presented as a table or chart of function values for one mole of a substance (or in the case of the steam tables, one kg). A thermodynamic datafile is a set of equation parameters from which the numerical data values can be calculated. Tables and datafiles are usually presented at a standard pressure of 1 bar or 1 atm, but in the case of steam and other industrially important gases, pressure may be included as a variable. Function values depend on the state of aggregation of the substance, which must be defined for the value to have any meaning. The state of aggregation for thermodynamic purposes is the ''standard state'', sometimes called the ''reference state'', and defined by specifying certain conditions. The ''normal'' standard state is commonly defined as the most stable physical form of the substance at the specified temperature and a pressure of 1 bar or 1 atm. However, since any non-normal condition could be chosen as a standard state, it must be defined in the context of use. A ''physical'' standard state is one that exists for a time sufficient to allow measurements of its properties. The most common physical standard state is one that is stable thermodynamically (i.e., the normal one). It has no tendency to transform into any other physical state. If a substance can exist but is not thermodynamically stable (for example, a supercooled liquid), it is called a ''metastable'' state. A ''non''-''physical'' standard state is one whose properties are obtained by extrapolation from a physical state (for example, a solid superheated above the normal melting point, or an ideal gas at a condition where the real gas is non-ideal). Metastable liquids and solids are important because some substances can persist and be used in that state indefinitely. Thermodynamic functions that refer to conditions in the normal standard state are designated with a small superscript °. The relationship between certain physical and thermodynamic properties may be described by an equation of state.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Thermodynamic databases for pure substances」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.